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Abstract

We investigate classes of quantum Heisenberg spin systems which have
different coupling constants but the same energy spectrum and hence the
same thermodynamical properties. To this end we define various types of
isospectrality and establish conditions for their occurrence. The triangle and
the tetrahedron whose vertices are occupied by spin % are investigated in some
detail. The problem is also of practical interest since isospectrality presents an
obstacle to the experimental determination of the coupling constants of small
interacting spin systems such as magnetic molecules.

PACS numbers: 75.10.Jm, 75.40.Cx

1. Introduction

The measurement of the temperature-dependent magnetic susceptibility, x (7), provides a
standard essential diagnostic method for establishing the magnetic properties of a system. A
careful comparison between measured data and the predictions for x (7) as derived from a
model Hamiltonian is routinely performed with the goal of establishing numerical values
of model parameters, for example, the exchange constant(s) of the Heisenberg model of
interacting isolated spins. The success of this technique is so firmly established that it is
taken for granted that there is a one-to-one correspondence between a given form of x (7") and
the numerical values of the model parameters. Most certainly it is unnatural to contemplate
that one might be able to continuously vary the parameters of a model Hamiltonian and yet
generate a single, invariant form for x (7") and similarly for other thermodynamic quantities.
Yet surprisingly, there are a number of exceptional systems, where there is a continuous
infinity-to-one correspondence between model Hamiltonians and measurable thermodynamic
quantities. One of these exceptional cases was recently encountered [1, 2] in the course
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of attempting to determine the exchange constants of a simulating Heisenberg model from
experimental susceptibility data for a specific synthetic magnetic compound [3].

We shall refer to systems of a continuous family having the same eigenvalue spectrum as
being ‘isospectral’. This notion is chosen in analogy with the use of ‘isospectrality’ in other
areas of physics, e.g. the occurrence of supersymmetric pairs of Hamiltonians (see, e.g., [4],
section 7.1) or the problem of bounded domains with isospectral Laplacians (‘Can one hear
the shape of a drum?’ [5]). The subject of isospectral spin systems is not completely novel but
has been discussed in the literature only on a few occasions, e.g. [6,7]. However, there is, to
the best of our knowledge, no systematic account of this phenomenon, the first steps of which
will be presented in this paper.

In addition to providing a general approach to isospectrality we analyse in depth two cases
of distinct Heisenberg systems where continuous variation of the exchange constants gives rise
to one and the same set of temperature-dependent thermodynamic quantities. The operational
conclusion for an experimentalist is quite sobering, in that for these specific systems measured
data alone cannot fix the exchange constants. Comparison between theory and experiment
can only place a weak constraint on a continuous family of equally acceptable choices of
parameters. Although we provide some helpful insights, it is very difficult to formulate the
general set of conditions to be met so as to achieve such exceptional model systems. It is
reasonable to expect that if one and the same temperature-dependent thermodynamic quantity
is generated by a continuous family of Hamiltonians then necessarily all members of that family
share the very same eigenvalue spectrum. This is indeed the case as is proven in section 3 for
two particular thermodynamic functions.

In short, our goal in this paper is to provide a first systematic study of Heisenberg isospectral
spin systems. The remarkable advances [8,9] in synthesis magnetochemistry, of incorporating
significant numbers of interacting paramagnetic centres within individual molecules, may
provide the impetus for wider studies that will yield a more comprehensive set of conditions
for the occurrence of isospectral spin systems.

The layout of this paper is as follows. In section 2 we introduce our notation and the
basic concepts of ‘isospectrality’, ‘complete isospectrality’ and ‘covariant isospectrality’ for
spin systems with Heisenberg Hamiltonians. Families of isospectral systems are algebraic
varieties in the space J of coupling constants. Covariant isospectrality is implemented by
a unitary representation of some Lie group, which simplifies the calculations considerably.
Unfortunately this is a rare case, as we will see. Complete isospectrality means that all
eigenvalues of two systems with the same magnetic quantum number are in one-to-one
correspondence and equal. We do not know whether this is a strictly stronger property than
plain isospectrality, except for the case of a trivial counter-example. However, we need this
apparently stronger concept to derive the conclusion that completely isospectral systems share
the same magnetic susceptibility function. This is done in section 3 where the inverse problem
is also settled as well as the analogous question for the specific heat function. The result in
short is the following: plain isospectrality is equivalent to possessing the same specific heat
function and is necessary for possessing the same magnetic susceptibility function. Complete
isospectrality is sufficient for possessing the same magnetic susceptibility function. In section 4
we identify the isospectral invariants which are linear or quadratic in the coupling constants.
This is crucial for section 5 where we show that the triangle with spin s = % is both of
completely and covariantly isospectral type but that for s > % breaks down isospectrality.
On the other hand, if the number N of spin sites exceeds 3, covariant isospectrality is no
longer possible. This is proved in section 6 with the aid of MATHEMATICA 4.0 and some
1

trace formulae which are explained in appendix A. The tetrahedron (N = 4) with s = 5

nevertheless possesses completely isospectral families of dimension one and two, as shown in
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section 7 and appendix B. In section 8 we provide some heuristic arguments in order to explain
the findings of the previous sections. We expect that isospectrality only occurs if the number
of all possible bonds exceeds the number of independent eigenvalues and show that this never
happens except for s = % and N = 3,4, 5. A table summarizing our results and conjectures
on the occurrence of isospectrality for different N and s and concluding remarks are provided
in section 9.

2. Notation and definitions

We consider spin systems with N spin sites, spin quantum number s and isotropic Heisenberg
coupling between all sites x and y with coupling constants J,,. For the sake of compact notation
we will write the (g’) coupling constants J,, as the components of a vector J € J = RG).
Thus a specific point of 7 uniquely specifies the strength of the interactions between all pairs
of spins and will be sometimes called a ‘system’.

Let Sf(‘) (i =1,2,3), denote the three components of the spin observable S, at site x and,
as usual,

§S=)S, s =350 5% =50 +is@ (1)
X X

denote the total spin vector and its various components. All linear operators occurring in
this context will be identified with the corresponding dim x dim-matrices, dim = (2s + 1)V
being the dimension of the total Hilbert space of the spin system, with respect to the fixed
basis consisting of tensor products of eigenvectors of S'*. The Hamilton operator can then be
written as

Hy=J-H=Y) JyH, @
x<y
where
3 . .
ny == Sx * Sy == Z S)EZ)S‘(,Z) (3)

i=1

Here H is an (g)-dimensional vector, the components of which are dim x dim-dimensional
matrices H,,.

If the spin system is coupled to a constant external magnetic field H, the total Hamilton
operator will be

H(h) = Hy — hS® “4)

where i = gu p’H contains the common combination of the gyromagnetic ratio g and the Bohr
magneton wp. As usual, the partition function, which yields all the standard thermodynamic
functions, is defined by

Z(B, h) = Tr(exp(—=BH (h))). &)

In particular, one obtains from Z the specific heat function

82
c(B)= P55 0 2(5.0) 6)
and the magnetic zero-field susceptibility function
1 92
x(B) = - —=InZ(B, h)lp=0. (N

B ah?
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Furthermore, we will need the traces of powers of Hy, t, = Tr(Hy),n =0, 1,2, ..., dim, and
the set of traces
T(Hp) = {tln =0,1,2, ..., dim}. (8)

Two Hamilton operators with the same N and s, H\" = J© . H and H\” = J® . H are
called isospectral if they have the same eigenvalues, counted with multiplicity, or, equivalently,
if they generate the same characteristic polynomial:

det(Hy" —») = det(H” —1)  VAeR. )

According to the above remarks, we will also speak of ‘isospectral systems’. Sometimes we
will apply the term ‘isospectral’ to more general pairs of operators derived from H, W i=1,2
if there is no danger of confusion. Clearly, equation (9) defines an equivalence relation ~
on J. The coefficients of a characteristic polynomial P (1) = det(Hy — A) can be viewed as
polynomials of the coupling constants J,,. These polynomials assume constant values exactly
on the ~ -equivalence classes [J]~, which we will call isospectral classes. Consequently, the
isospectral classes are algebraic varieties in 7, since they are defined by a finite number k of
polynomial equations* p,(J) =0,v =1,..., k.

In algebraic geometry there are various equivalent definitions of the dimension of an
algebraic variety, which are, however, too technical to be reproduced here (see, for example,
[10], chapter 9). For our purposes it will suffice to note that for the special case where
the Jacobian matrix (pr/a Jj)u:l...k,j:l...(’;’) has locally a constant rank r, the corresponding

isospectral classes are locally differentiable manifolds of dimension £ = (2] ) — r. This is an
immediate consequence of the fibration theorem (see, for example, [12], theorem 3.5.18). In
particular, if k > (g’ ) and the rank of the Jacobian is maximal, r = (1;/ ), the isospectrality
classes will only consist of a discrete point set. Note, however, that the equivalence classes
will never be trivial since they at least consist of the orbits of the group of discrete symmetries
of J generated by permutations of spin sites.

We will say that the pair (N, s) is of isospectral type if the corresponding space of coupling
constants 7 contains at least one isospectral equivalence class of dimension £ > 1. The largest
dimension ¢ of isospectral equivalence classes will be called the dimension of the isospectral
type.

Functions f : 7 —> Rwhich are constant on isospectral classes will be called isospectral
invariants.

Moreover, we will consider a special case of isospectrality in which the equivalence classes
are easily calculated. Obviously, two isospectral Hamiltonians Hél) and Héz) can be related
by a unitary transformation U':

H? =U*HU. (10)

U maps the eigenvectors of Héz) onto the corresponding eigenvectors of Hél). In the case
of a one-dimensional isospectral equivalence class parametrized by a coordinate ¢, U can
be chosen to depend smoothly on ¢. Following a closed loop, the corresponding unitary
transformation need not reduce to the identity transformation, but may include some phases.
We will come back to this phenomenon later. If for sufficiently many curves of isospectrally
equivalent points the corresponding unitary transformations U (¢) can, moreover, be chosen
to be a one-parameter group, the system (I, s) will be called of ‘covariant isospectral’ type.
More precisely, we define:

4 For an elementary introduction into the theory of algebraic varieties, see, e.g., [10]. Note that algebraic varieties

need not be differentiable manifolds since they may contain ‘boundaries’ such as the vertex of the lightcone
x2 +y2 + 2% = %12 or ‘hairs’ like x = y = 0 in the variety (x> + y?)z = 0.
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Definition 1. (N, s) is of covariant isospectral type iff it is of isospectral type and for any
isospectrally equivalent JV | J® which are sufficiently close, there exists an anti-Hermitian

dim x dim-matrix 2, and a real (1;’) X (g)-matrix M and some ty € R, such that forallt € R

exp(Q*1)JV - H exp(Q1) = (exp(—M1)JV) - H (11)
and
exp(—Mty)JV = J@. (12)

It follows immediately, that the orbit exp(—Mt)J in J-space corresponds to a family of
isospectral Hamilton matrices. Since in our case all Hamilton matrices are real and symmetric,
2 can also be chosen as real and hence antisymmetric, and thus exp(£2¢) represents a rotation
in the real Hilbert space R4" .

The condition (11) may be replaced by its equivalent infinitesimal version:

[H,Q]=—-M*"H. (13)

This equation could be used to show that M, considered as a linear transformation in the space
of (g’ ) -dimensional vectors with matrix entries endowed with the scalar product Tr(K - H),
will be an antisymmetric matrix. We will give an independent proof of this fact later.

Furthermore, we note that the set of solutions (2, M) of (13) will be a Lie algebra
with respect to the obvious vector and commutator operations. Hence covariant isospectral
equivalence classes will be orbits of the corresponding matrix Lie groups.

Thus far we have only discussed isospectral systems in the absence of an external magnetic
field. If we include the field H and allow for a corresponding -dependence of the Hamiltonian,
we have to consider a slightly stronger concept of ‘complete isospectrality’.

Definition 2. Two Hamiltonians Hél) and Héz) (o1, equivalently, two vectors J W and J® e
H ~ ; _ g 3

J) are called completely isospectral (JV ~ J@) iff forallh € R HV(h) = Hy’ — hS®

and H® (h) = Héz) — 1S are isospectral.

Proposition 1. The following conditions are equivalent:

(i) JO ~ gO.

(ii) Py HSI)PM ~ Py HOQ)PM for all projectors Py onto the eigenspaces of S©
corresponding to the eigenvalue M;

(iii) IP’SH(;DIP’S ~ IP’SHSZ)IP’Sfor all projectors Ps onto the eigenspaces of S* corresponding to
the eigenvalue S(S + 1).

Proof.

(i) = (ii). Since all H(h), h € R, commute, there exists a system of joint eigenprojectors
Py, m, such that

H(h) = (e, — hM,)Py ,. (14)
v,M,
Hence
PyHMWPy = Y (6 —hM)Pyu,. (15)
v,M,,M,=M

If HV (h) ~ H® (h)forallh € R, thenboth systems have the same set of eigenvalues €, —h M,
with the same multiplicities Tr P, »,,. Hence, by (15), also Py HV (h) Py, ~ Py H® (h) Py,
in particular, Py H\" Py ~ Py H{® Py for all M.
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(ii) = (iii). The eigenspaces corresponding to P, j;, can be further split into eigenspaces of
2. This can be written as

Smax

Pos, = Y Poms- (16)
S=|M,|

Applying the ladder operators S* gives
TrPym, s =TrP,ss=TrP,g forall M,=-S,...,S. (17)

These numbers are the multiplicities of the eigenvalues of the operators Ps Py Hgi)]P’SPM,
which are hence isospectral for i = 1,2. By summation over M we also conclude that
IP’SH(;')IP’S are isospectral fori =1, 2.

(iii) = (ii). This can be shown analogously by considering

PsHQPS = Z 61)7)],),3” (18)
v,8,,5,=S
Sy
Prs,= Y. Pisiu (19)
M=-S,
and
TP, g = QS+ DTrPg 4 (20)

(ii) = (i). This follows from

H(h) = Z(PMHOPM — hM). 1)
M

|

Obviously, J ~ J@ implies J ~ J®, but not conversely: take N = 3, s = 1, then

-1
JV=(1]~J®=[ -1
1 -1

but JM % J@_ Unfortunately we do not know of less trivial counter-examples. The problem
is the following: being rotationally symmetric, Hy commutes with S and S, hence each
eigenspace of Hy with eigenvalue €, is spanned by simultaneous eigenvectors of §? and S®,
say, [v, A, u),v=0,...,D,A=1,...,d,, k. = =Sy1, ..., Svx, such that

S, A, 1) = Sy (Sya + DIv, &, ) SO, A, ) = plv, A, ). (22)

The degeneracy of the eigenvalues €, will be

dy

ny =Y (28, +1). (23)

r=1

We do not assume that the S, ; have different values. The corresponding eigenvalues of
H(h) = Hy — hS® are

Eypu=¢€ —hu. 24
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For ‘generic’ J € J we expect that Hy will have no further degeneracy besides that dictated by
rotational symmetry (‘minimal’ degeneracy), i.e. we expect that d, = 1. So A can be skipped
and p = —S,,...,S,. In this case, ‘isospectrality’ and ‘complete isospectrality’ would be
equivalent. So, heuristically, we may consider these two notions as having equal meaning,
although we have to distinguish between them for the sake of mathematical rigour.

For the most important case of isospectral systems which are obtained by continuously
varying the coupling constants we can show the following:

Proposition 2. Any two systems joined by a continuous curve of isospectral systems are
completely isospectral.

Proof. Consider a curve t — J(¢) and consider

Ho(t)=H -J(t) =) &Py(1) (25)

and

PsHo(t)Ps = ) €,Py(1)Ps. (26)

Since ¢t + P,(t) is continuous and Tr(P, (¢)Ps) assumes only non-negative integer values,
the latter must be constant with respect to the parameter . However, Tr(P, (t)Ps) equals the
multiplicity of the eigenvalue €, in (26). Thus all PsHy(¢)Ps, t € R, are isospectral, and, by
proposition 1, all Hy(t) are completely isospectral. (|

Note that, according to this proposition, in the above counter-example the two systems
cannot lie in the same connected component of an isospectral class.

We add some definitions concerning symmetrical polynomials which will be of later use:
the equation

d d
[[G+x) =) sx 27)
n=1 v=0

defines the elementary symmetrical polynomials

d d
s = E Xu, 5 = E XnXm, Sdzl_[xn- (28)
n=1

n=1 n<m

These also appear, up to a sign, as the coefficients of the characteristic polynomial of Hj

d
py=[]-E) (29)
i=1

written as polynomials of the E;, where d = dim. Every other symmetric polynomial can be
written uniquely as a polynomial of the s, (see, for example [10], section 7.1, theorem 3). This
holds especially for

d
tn=Tr(H)) =Y E (30)
i=1

Conversely, each s, can uniquely be written as a polynomial of the 7,,n = 1...d (see, for
example [10], section 7.1, theorem 8), e.g.

1 5 3 2 2
=5 (1} — 1061, + 15115 + 201713 — 208213 — 301,14 + 245). 31)

This representation is independent of the dimension d.

S5
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3. Specific heat and magnetic susceptibility

Asmentioned in the introduction (completely) isospectral spin systems will give rise to the same
thermodynamic functions such as specific heat and magnetic susceptibility. In this section we
will state this more precisely and also prove the converse, up to the subtle distinction between
complete and plain isospectrality.

Lemma 1. Two spin systems are isospectral iﬁ‘T(H(;l)) = T(Héz)).

Proof. Recall that 7 (Hy) was defined as the set of traces t, = Tr(Hj),n =0, ..., dim. Hence
the ‘only if” part is obvious. From the remarks at the end of section 2 it follows that if two
systems possess the same t,, n = 0, ..., dim, they share also the same values of the standard
symmetric polynomials s, (E) and hence have the same characteristic polynomial p(}). O

Proposition 3. Two spin systems are isospectral iff they possess the same specific heat function.

Proof. c(f) can be expanded into a Taylor series at 8 = O:

t12 t2> ) (l‘]lz h <t12 %) > 13 ) 3
c =|—-=+= +|l—=—-——(|5—-—"==)-= +--e 32
@) ( 1 1 p 2 o \g 2) 2 p (52)
This is the starting point of the so-called ‘moment expansion method’ (see, e.g., [11],
section 7.3). Obviously, each coefficient of 8" uniquely determines ¢,, if the other traces

tw,m < n, are already known. Note that fy, = dim, r; = 0. Together with lemma 1 this
completes the proof. ]

Now we consider again H (h) = Hy — hS® with eigenvectors |v, A, 1) according to the
previous section. By its very definition, two completely isospectral systems share the same
partition function Z(8, h) and any other thermodynamic function which can be derived from
it. In particular, the following holds:

Proposition 4. Tivo completely isospectral systems possess the same magnetic susceptibility
function.

To tackle the converse problem, we consider Z(8,0) = >_ n, exp(—f¢,) and define the
coefficients o, implicitly by

Tr (S®2 exp(—BHp)) = ) _ ouny exp(—pe,). (33)
In the case of minimal degeneracy, i.e. d, = 1, we have n, = 2§, + 1 and
! i 21 (S, +1) (34)
o, = = Sy .
25,41, =" 73

In the general case,

1 d, S
S

ft A=l pu==3S5,,
1 &1
= — Z gsu,k(su,x + l)(ZSV,)L + 1) (35)
V=1

Proposition 5. Two spin systems with the same susceptibility function are isospectral.
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Proof. Since
B ()2
=—77Tr (S —BH 36
x(B) Z(8.0) r (S9% exp(—B Ho)) (36)
the two systems will have the same function
Tr (exp(—ﬁHo)S(3)2)
Tr (exp(—B Hy))

D
oyn, exp(—Be,
_ 2o p(=hev) (37)
ZV:O ny CXP(—,3€v)
Since gy < €] < & < ---, the terms exp(—pe,) are of different orders of magnitude for
B — oo. The first term increasingly dominates, hence

f(B) =

oono exp(—pBeo) _

lim f(f) = (38)
B—00 ng exp(—pBe&o)
If we subtract this limit from f(8), the dominant term becomes asymptotically
N o1n exp(—per)
F(B) =00 =poce 2 2
on
= —— exp(—Ble1 — £0)). (39)
no
In the next step we have
on o2
f(B) — oo — o exp(—pB(e1 — €0)) Xp—oo o 2exp(—pB(e2 — &) (40)

and so on. In this way, from the behaviour of f(8) for 8 — 0o, we may extract the values

oing oy, Opnp
O-Oa 3 e ey g e ey
no no no
and
€1 —€0,E2—€0y..., &) —E0y...,ED — Ep.-

Let t, = Tr(H() as above and p, = Tr(H(;’S(3)2), n e N. py = Tr(S®?) can be calculated
independently of Hy. Since

D D
oyn,y
= vty = 41
no and hence o,n,, v =1, ..., D, are also uniquely determined.
Next we consider the Taylor expansion of f(8) at 8 = 0:
Mo M1 o M2 2 3o L M3 3
=— ——fB+|——+— + —+—=— — —
F fh t P < 212 2z0) P < 617 2t 6t ) p
122 I4 Bur Ly H4 4
+ = - | - — - =+ —
(“ ’ (4;3 24r§) 62 412 24z0> g
bl (42)
Recall that 7y, po are known. The linear term then gives
D
= Tr(HoS®?) =" aynye,. (43)

Vo =0
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On the other hand, we know the left-hand side of

D
Y ounu(e, — &) = 1 — Eopto (44)
v=0

hence ¢g and all ¢,, v =1, ..., D are also known. Similarly,

D
D ouny(e, — 80)* = 2 — 2e041 + 5 o (45)
v=0

hence w, is known and from the ﬂz-term in (42) also 1,, and so on.

Eventually, we obtain all #,,, i,,, n = 2, ..., dim solely from x (8). According to lemma 1
this gives us all the eigenvalues of Hy with multiplicity, i.e. n,, v =0, ..., D and the two spin
systems are isospectral. ]

The proof does not give complete isospectrality: if some eigenvalue ¢, belongs to different
Syr, A > 2 then fromn, =), (28,, + 1) and

. ZA %SVA(SU)L + 1)(251))» + 1)
>, Q2Su+1)
the S, , cannot be uniquely determined.

v

4. Some isospectral invariants

Criteria for non-isospectrality could, in principle, be checked by brute-force methods: calculate
the characteristic polynomial of the matrix Hy = J - H, say p(A) = Y% ¢,1". Select (})
different coefficients c;, ¢j, ... (v = dim being excluded since c4;,, = 1) and calculate the
Jacobian determinant

a(c,-,cj, )

JaclJ) = 55" Ty

(46)
preferably by using computer algebra software. If the Jacobian vanishes nowhere, according
to the remarks in section 2, (N, s) cannot be of isospectral type.

In practice this method will, even for small N and s, rapidly become extremely
memory- and time-consuming. To simplify the problem one could—in the case of complete
isospectrality—restrict oneself to subspaces that are invariant under Hy, for example, subspaces
‘H(M) of constant magnetic quantum number M.

The space with maximal M, H(M = Ns) is one dimensional and is spanned by the
product state

@o=Is.s,....8) (47)
which is an eigenstate of J - H for all J € J with eigenvalue
Eg=5"T=5"Y Jy. (48)
x<y

This proves the first part of the following:
Lemma 2. If J - H and J® - H are completely or covariantly isospectral, then
M _ 2
DT =20 (49)
x<y x<y

ie. JU and J@ lie in the same hyperplane perpendicularto1 = (1,1, ..., 1).
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Proof. If all J,, > 0, then Ey = s>J will be the maximal eigenvalue of J® - H. In fact,
(@o|Hyy@o) is the maximal expectation value for each H,,. Hence J is an isospectral invariant
atleastin the domain J* = {J| all J,, > 0}. Now assume covariant isospectrality and let # >
J(t) = exp(—M1)J(0) be an isospectral curve which will be restricted to J*. According to
what has been said before, 0 = J = $(J|1) = (J|1) = (-MJ|1) = (J| — M*1) = (J|M1)
forall J € J*. Since J* linearly generates 7 it follows that M1 = 0, i.e. all row sums of M
vanish and J is an isospectral invariant on the whole space 7. U

Before proceeding with M = Ns — 1 we will show that also

Lemma 3. | J|> = ZKy szy is an isospectral invariant.

Proof. Obviously, Tr(HOZ), the sum of all eigenvalues squared, is the same for isospectral
Hamiltonians. After expanding the square (J - H)? one realizes that only those products

H,, H,, have a non-zero trace where x = 1 and y = v. Hence Tr(HOZ) = Z)Ky szy Tr(szy) =

ey T3 1s%(s+1)*(2s + DV (see appendix A). The actual value for Tr(H},) is irrelevant
for the proof; what matters only is that it is independent of x, y. This concludes the proof. [J

From lemma 3 it follows immediately that in the covariant isospectral case the matrix
exp(—tM) leaves the Euclidean norm || ---| invariant and thus must be an orthogonal
transformation and its generator —M will be antisymmetric.

5. The triangle (/N = 3)

1
5.1 SZE

Next, we consider eigenvalues with eigenvectors in the subspace H(M = Ns—1), butrestricted
to the case N = 3. With the abbreviations

J=.112+J23+J13 (50)
I' = JiaJoz + JioJiz + I3 13 5D

the eigenvalues are calculated to be (see [13], section 62, exercise 2)

Eq=s*J Eip=s(s—1)J++J2—3T. (52)

Hence the first three eigenvalues are constant on curves with constant J and I'. These are
circles with radius

r=,3J*=2r (53)

the centre of which is located on the line J1, = J>3 = Jj3, including the degenerate case r = 0.
For s = % the list of eigenvalues is already exhausted: due to rotational symmetry the

value E| is four-fold degenerate (S = %) and the E; , are twofold degenerate (S = %). We
conclude:

Proposition 6. The system N = 3,5 = % is of complete isospectral type with dimension two.

We now consider the question of whether the triangle with s = % is of covariant isospectral
type, i.e. we seek solutions of

[H,Ql=MH 54
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where Q and M are antisymmetric. Let T = T3 be the unitary left shift operator which
represents a cyclic permutation of the spin sites. Then a solution of (54) is given by

| | 0 I -1
Q:m(T—T*) M:ﬁ —11 _01 (1) (55)
2 can also be written as
Q=;03'(¢71 X 02) (56)

43

where the o; (i = 1, 2, 3) denote the Pauli matrices. Obviously, €2 is rotationally symmetric
which entails complete isospectrality. The factor % is chosen such that the parameter ¢ in

exp(t M) will be just the angle of rotation. T3 = T entails Q3 = —iQ, hence the exponential
series of exp(#£2) will be actually a polynomial in :
t t
exp(tR2) = 1 +2Q sin 5 + (2S2)2 <1 — cos 5) 57
For special values of # we obtain
4
exp (?”Q) _7 (58)
expdnrQ) =T =1 (59)
expQrQ) = 3(T°+T - 1). (60)
The last expression can be rewritten using
1
H=|1]|-H=2(P,-P)) (61)
1

where IP3/, (respectively, IP;/,) denotes the projector onto the subspace S = % (respectively,
S = %). The result is

exp(ZTrQ) = IP)3/2 — ]P)l/Z- (62)

This means that an eigenstate of Hy with § = % acquires a phase of m after a full rotation
in J-space, analogous to the occurrence of Berry phases for adiabatic loops in parameter
space. Summarizing, we state the following proposition which, in essence, is due originally
to Grachev [6]:

Proposition 7. The system N = 3,5 = % is of both completely and covariantly isospectral
type.

5.2. A physical example

An interesting and timely application of this theory is provided by the example of the molecular
magnet (CN3Hg)4Na;[HyVP4030(CH;);CCH,OH;]-14 H,O which features two uncoupled
systems of three V#* (s = %) ions that interact via antiferromagnetic Heisenberg exchange. It
has been proposed [3] that the Coulomb interaction between an Na ion and two of the three V4
ions gives rise to what is essentially an isosceles triangle, with the distances between the three
vanadium ions being 3.20, 3.21 and 3.36 A. It is then quite reasonable to assume that the three
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exchange constants satisfy Ji, = Ji3 # Jo3. Infact, calculation of the weak-field susceptibility
has yielded results that are in excellent agreement with accurate susceptibility measurements
from room temperature down to 2 K upon assigning the values Ji, = Jj3 = 64.7 K and’
Jos = 7.5 K [1,2]. Moreover, the calculated energy level spacings that follow from these
assignments have recently been confirmed to good accuracy in a direct manner by inelastic
neutron scattering [14]. Nevertheless, as the work of this section has shown, the identical
energy levels and the identical temperature-dependent susceptibility emerge for the continuous
choices of the three different exchange constants that lie on curves with / = 136.9 K and
I' =5156.6 K2.

5.3 5 >

o= NI=

For s > 5 we consider the next subspace H(M = 3s — 2). The characteristic polynomial
pA) = ZSZI ¢, A" has been calculated using MATHEMATICA 4.0, but is too complicated to
be presented here. One particular Jacobian reads
d(c3, ¢4, ¢5)
d(J12, J23, J13)

This is a polynomial in s which has no integer or half-integer roots. Therefore, we have proved
the following:

= (3s — 1)(6s — (1 — 8s + 65°)(1 — 65 + 1552). (63)

Proposition 8. The system N = 3,s > % is not of complete isospectral type.

6. Isospectrality for N > 3

The question arises as to whether our result that complete isospectrality only occurs for s =
also holds for N > 3. Our method of calculating the Jacobian (46) for arbitrary s will n
longer work for larger N. However, we can prove a weaker statement, namely:

1
2
o

Proposition 9. Systems with N > 3 cannot be of covariantly isospectral type.

Proof. For this we need a trace formula which will be explained in appendix A:

Tr(Hy) = D (Jo)? (=487 + 1D*Qs+ DY) + Y Ty dyede: (357G + D’ @2s + DY),

x<y x<y<z
(64)
From the isospectral invariance of Tr(H?) we also conclude that
A=) Uy —ds6+1) Y Tyl (65)

x<y x<y<z

will be invariant. Now we consider four different spin sites (using N > 3) denoted by
1,2, 3, 4 and consider vectors J € J which have vanishing components except possibly for
Ji2, 13, J23, J14, Joa, J3a. One-parameter isospectral curves passing through J satisfy

d
3 HI0) =0. (66)

Using (65) and %J (t) = —MJ(t), equation (66) can be written as an equation which is
linear with respect to the 15 relevant matrix entries of M and trilinear with respect to the six

3 It is usual to measure the coupling constants in units of Kelvin. The corresponding energies are obtained by
multiplying with the Boltzmann constant kp.
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non-vanishing components of J. Using MATHEMATICA 4.0 it is easy to show that (66)
only has the trivial solution M = 0. For example, one may randomly choose 15 vectors J (it
suffices to consider components —1, 0, 1) and cast the corresponding 15 equations of the form
(66) into matrix form. Non-trivial solutions exist only if the determinant of this matrix, which
is a polynomial in s of degree 30 with integer coefficients, vanishes. However, the zeros of
the polynomial can be computed numerically and shown not to attain half-integer or integer
values. |

So it seems that the concept of covariant isospectrality is of little use, having only one
single application for N = 3,s = % However, covariance may be restored for N > 4 if the
class of admissible Hamiltonians is suitably extended, e.g. to also include Hamiltonians which

are bi-quadratic in the spin observables. However, this is beyond the scope of the present

paper.
Of course, our proposition 9 does not exclude plain isospectrality for N > 3. Indeed,
we will show that the system N = 4,5 = % is completely isospectral, albeit not covariantly

isospectral, in the next section.

7. The s = % tetrahedron case

Inthe case N = 4,5 = % it is still possible to calculate the coefficients of the characteristic
polynomials of Hj restricted to the subspaces with M = 0, S = 2, 1,0. Obviously, this is
enough in order to study complete isospectrality since all eigenvalues of Hy appear within these
subspaces. It turns out that all coefficients can be written as functions of four fundamental
invariants Iy, I, I3, I,. These can most conveniently be written in terms of new coordinates
in 7, which are defined as half the sums and differences of the coupling constants of adjacent
edges:

St = 5(Ji2 + J4) Diy = 3(Jia — J4) (67)
etc.

Proposition 10. Two spin systems with coupling constants JV, J® with N = 4,5 = % are
completely isospectral iff the following four functions assume the same values for JV and
JP:

I, = D}, + D%, + D3, (68)
L =S, +55+53, (69)
I =S8+ 813+ 814 (70)
Iy =2D13D13Dy4 + DL, S)) + D123513 + D4, S14 — S12513814. (71)

Now let I’ be the functional matrix obtained by partial differentiation of 1, I, I3, I4 with
respect to its six arguments Si,, ..., D14. The rank of I’ assumes its maximal value of 4 iff no
determinant of the 15 possible 4 x 4 submatrices of I’ vanishes. We denote the subset of those
points with maximal rank by R C J. If an isospectral class lies entirely within R it will be a
two-dimensional submanifold of the six-dimensional space 7. This follows by a well known
theorem of differential geometry (see, e.g., [12], theorem 3.5.4). We will call this case generic
and the other cases exceptional.

Although 7 is six dimensional, one can visualize the two-dimensional submanifolds in
the generic case. I} = constant defines a sphere in the three-dimensional D-space with
coordinates Dy, Dy3, Dj4. I, = constant and /3 = constant define the intersection of a
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sphere and a plane, i.e. a circle in S-space. For given D the last equation I4(D, S) = constant
picks out a finite number (actually < 6) of points in that circle. If the corresponding angles ,,
are drawn as different radiir, = 1 + % in D-space (identifying points with r, = % and %) we
obtain a surface folded in a complicated way.

A large number of two-dimensional generic isospectral classes have been identified
numerically. The exceptional classes are one- or zero-dimensional and will be discussed
further in appendix B.

8. Heuristic arguments for the (non-)occurrence of isospectrality

In the previous sections we have studied isospectrality for the cases s = % N = 3,4 and
excluded certain other cases, e.g. complete isospectrality for s > % and covariant isospectrality
for N > 3. However, we have been unable to present a complete list of criteria for the
(non-)occurrence of isospectrality. What is also missing is some simple and intuitive argument
as to why isospectrality is so rare. As a substitute for a complete theory we will, in this
section, provide some heuristic arguments for the (non-)occurrence of isospectrality which
may also give more insight into isospectrality than detailed proofs. We think that these
arguments could be made rigorous as far as necessary conditions for isospectrality in the cases
s = % N = 3,4, 5 are involved. (See the remarks in section 2 on the dimension of isospectral
classes and the fibration theorem.) However, a detailed proof would require technical issues
from the theory of algebraic varieties which are beyond the scope of this paper and, moreover,
would appear as superfluous given that isospectrality in some of these cases has already been
proven by case inspection.

The heuristic argument goes as follows: isospectrality will (only) occur if the number (2] )
of bonds between spin pairs exceeds the number L of independent eigenvalues of Hy. In this
case, typically the systems corresponding to an (n = (g’ ) — L)-dimensional sub-variety of
will possess the same eigenvalues. The argument may even be applied if one is not aware of all
relations among the eigenvalues which determine L. In such a case of unknown relations one
would perhaps overestimate L and hence underestimate the dimension n of the isospectrality
classes but, depending on the case, one could correctly predict the occurrence of isospectrality.

When counting the number L of independent eigenvalues one first has to consider the
(28 + 1)-fold degeneracy dictated by the rotational invariance of Hy. In the simplest example,
one has to couple N = 2 spins s = %, obtaining one triplet and one singlet as eigenspaces of
Hy, symbolically 2 x 2 = 3+ 1. Thus there are not four, but only two independent eigenvalues
of Hy. Similarly, for N = 3 one has 2 x 2 x 2 = 4+2+2, hence three independent eigenvalues.
In the latter case there are (3) = 3 bonds. Thus the heuristic argument does not yet explain
isospectrality with (n = 1)-dimensional classes. Howeyver, itis easy to find a ‘missing relation’
among the eigenvalues which reduces the number of independent eigenvalues to L = 2: it is
just the relation Tr Hy = 0 which yields a linear relation of the form 4E| + 2E, + 2E; = 0
between the eigenvalues E,,.

For s = % and arbitrary N it can be shown that there are exactly ( independent

)
LN/2]
eigenvalues due to rotational degeneracy and hence, considering Tr Hy = 0, L < (L NA/IZ J) — 1.
In this manner we obtain the results summarized in table 1.

Forlarge N the entries in the second column of table 1 grow asymptotically as 2V , / # and

hence almost exponentially, whereas (g] ) grows only quadratically. Therefore, our heuristic
argument will only predict isospectrality in the cases s = %, N = 3,4, 5 but not for larger N.
For larger s > % the growth of the second column will prevail from the outset (see table 2) and
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Table 1. Occurrence of isospectrality for s = % and arbitrary N based on a heuristic argument on
the number of bonds (third column) and the maximal number of independent eigenvalues (second

column).
N (LNI\;Z J) -1 (1;/ ) Isospectrality expected
2 1 1 No
3 2 3 Yes
4 5 6 Yes
5 9 10 Yes
6 19 15 No
7 34 21 No
No

Table 2. Non-occurrence of isospectrality for s = 1 and small N based on a heuristic argument on
the number of bonds (third column) and the maximal number of independent eigenvalues (second
column).

N L< (g’ ) Isospectrality expected

2 3 1 No
3 8 3 No
4 24 6 No

No

our argument will not even be applicable for small N. Of course, this does not strictly exclude
isospectrality for those cases, but makes it very unlikely in our opinion.

There is another aspect which shows up in table 1 and which we now discuss: note that
for N = 4 the difference between the numbers in the third and the second column, 6 —5 =1,
would only explain one-dimensional isospectrality classes, whereas we have encountered two-
dimensional classes in section 7. This indicates that the correct L should be 4, not 5, and that
there is a further ‘missing relation’ between the eigenvalues of Hy, comparable to Tr Hy = 0.
Indeed, as shown in the following paragraph, there holds a general property of the eigenvalues
of arbitrary Heisenberg Hamiltonians Hy corresponding to the distribution of the eigenvalues
among the quantum numbers S.

As above, denote by Pg the projector onto the eigenspace of S? with the eigenvalue
S(S+1). Then

Tr(HoPs) = ) Jey Tr(S - S,Ps). (72)

x<y

Since S§? and hence all Py commute with arbitrary permutations of spin sites, the last factor in
(72) does not depend on x, y and can be factored out:

Tr(HoPs) = Y Juy | Tr(S) - SoPs) (73)
x<y
= JTI‘(S[ . SQPS). (74)

Being independent of the J, this factor can be calculated for any suitable Hy, e.g. the one
with constant J;, = 1,

Hy=1(S*—=Ns(s+1)) (75)

L
2
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which yields, after some computation,

1
Tr(HoPs) = Jm (S(S+1) — Ns(s + 1)) Tr Ps. (76)

Hence for all Hy, the vectors with the components (Tr(HoPs))s—s . s  are proportional
to the constant vector given by the right-hand side of (76) with J = 1. This gives a number
of Syax — Smin = |Ns] independent linear equations for the eigenvalues of Hy. Of course,
Tr Hy = ) Tr(HolPs) = 0 is a consequence of these equations and must not be counted
separately. For s = %, N = 4,5 we obtain | Ns] = 2 independent equations, which explains
the two-dimensional classes for N = 4 we found in section 7, and predicts, at least, two-
dimensional classes for the case N = 5 not yet analysed in detail. If this case would show
isospectrality classes of dimension n > 2 one could try to explain this by invoking more
complicated relations derived from the higher moments, Tr(Hé‘]P’S), k > 1. However, we will
not further pursue this question here.

9. Conclusion

We summarize our results in table 3. It is in order to add some remarks on the possibility of
determining the coupling constants J. Our results on the limits of uniquely determining the
values of J in the case of isospectrality does not mean that these values could not be determined
otherwise. First, we did not consider thermodynamical functions which do not come solely
from the partition function, such as correlation functions, etc. Second, we do not adhere to
a positivistic attitude which would, in principle, deny the physical reality of unmeasurable
quantities. As in other domains of physics, these parameters could also be determined with
the aid of additional assumptions, e.g. based on the symmetry of the molecules and supported
by chemical considerations, which although plausible have not been confirmed directly. So
we think that the situation is different from theories with gauge freedom.

Table 3. Our results for the occurrence of various types of isospectrality for different N, s. The
proven results are indicated as ‘yes’ or ‘no’.

N K Plain isospectrality ~ Complete isospectrality =~ Covariant isospectrality
3 % Yes Yes Yes
3 >l Unlikely No Unlikely
4 % Yes Yes No
4 >1  Unlikely No No
5 1 Likely Likely No
>5 1 Unlikely Unlikely No
>5 > % Unlikely No No
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Appendix A. Trace formulae

Expanding the terms occurring in the trace

3 n
Tr HY = Tr (Z Jey Z S,g“s;”) (A1)

x<y i=1

and using Tr(A ® B) = (Tr A)(Tr B) one ends up with terms of the form
Tr(A;...Ap), A, € {SP, §P, sy, (A2)

Here the spin operators without a site index denote operators operating in the single site Hilbert
space C>*!, not total spin operators.

Let ¢;(i = 1,2, 3) denote the number of occurrences of S in the product A; ... A;. One
can easily show that Tr(A; ... Ay) is non-zero only if all ¢; are even or all £; are odd. We give
a list of the simplest cases, where the trace is non-zero:

£=0: Tr(l) =25 + 1 (A3)
0=2: TrS? = )" m’=1s(s+D@2s+1) (A4)
0 =3: TrSHW§@ S = _Tr §Og@ gD — és(s +DQ2s+1). (A5
From this we obtain for n = 2:
3
TrHy =Y J3) Tr(S9? @50 @ ly_,) (A6)
x<y i=1
= (Z ij) s+ D22+ DY, (A7)
x<y
For n = 3 there occur two kinds of non-zero terms:
Tr (S{PSP5Y @ SVSPSY @ 1y ) (A8)
and those terms obtained by permutations of {1, 2, 3}, and
Tr (S{? @ 52 @ S @ ly_3) (A9)
where x, y, z are pairwise distinct and i = 1, 2, 3. Consequently, we obtain
TrHy =Ti+T» (A10)
Ti= J)312s + DV 2 (Tr SV s@5)? (Al1)
x<y
— _ijygsz(ﬁ D22s + HY (A12)
x<y
3 .
T, = 3! ( > nyszJyz> Qs+ DV " (Tr s0?) (A13)
x<y<z i=1

- ( Z nyszjyz> I3+ D32+ DY, (A14)

x<y<z
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Appendix B. The exceptional cases

Here we collect some properties of isospectral classes for N = 4,s = % which belong to
the exceptional case. Although we did not obtain a complete classification of all isospectral
classes these results may be useful for further studies.

The subset J\'R, which denotes the complement of R, is characterized by the vanishing of
all 4 x 4 submatrices of /', hence it will also be an algebraic variety. After some computations
one shows that J\R is a union J\R = C; U C, U C;, of three simpler varieties given by the

following equations:

C: I =D}, +D}+D} =0 (B1)

Cy: I =3I} ie. Spp=Si3=Su (B2)

C: f=g=0 (B3)
where

f = (D}, — DL)Di3+ D12 Dia(Sis — S12) =0 (B4)

g = (D}, — D) Diz+ Di3Dia(Sia — Si3) = 0. (BS)

In the first case it is clear that an isospectral class lies entirely inside C; or outside Cj,
since /| is constant on this class. An analogous remark applies for C, but the case C3 is more
complicated. In the first case with I} = 0 the isospectral classes are zero dimensional, since
the circles defined by I, = i, and I3 = i3 intersect the variety Iy = —S12513514 = i
at most at six points. In the second case with S; = S13 = Si4 = o the isospectral
classes are the one-dimensional intersections of the sphere I} = i;,i; > 0 and the variety
Iy = 2Dy D13Dy4 + (D3, + D3y + D})o — 0 = iy. In the third case we have shown, using
the eliminate command of MATHEMATICA, that f = g = 0 implies an equation of the form
P(I] , 12, 13, 14) = 0, namely

P = —10817 + 451,91, + 181, — 5I3) + (I, + 21, — I3)* 2L, + 41, — I}). (B6)

Hence those isospectral classes with P (I, I, I, I4) # 0,1} # 0, I, # 3132 lie entirely inside
R and belong to the generic case. We conjecture that also the converse holds, namely that
P = 0implies f = g = 0 but could not prove it. By calculating the corresponding Groebner
bases, it can be shown that P and f, g generate different ideals in the ring of polynomials
in six variables. However, this will not exclude the possibility that the corresponding real
algebraic varieties may be equal. Hence we cannot exclude further exceptional cases in the
realm P = O but f # 0 or g # 0. The isospectral classes in the case f = g = 0 will be
one-dimensional: the constraint f = g = 0 allows one to express the variables Si», Si3, Si4
in terms of I3, Dy, D3, D14. The remaining constraints I} = i, I4 = i4 define a family of
curves obtained as intersections between spheres and tube-like surfaces.
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